3 research outputs found

    Explainable Artificial Intelligence for Image Segmentation and for Estimation of Optical Aberrations

    Get PDF
    State-of-the-art machine learning methods such as convolutional neural networks (CNNs) are frequently employed in computer vision. Despite their high performance on unseen data, CNNs are often criticized for lacking transparency — that is, providing very limited if any information about the internal decision-making process. In some applications, especially in healthcare, such transparency of algorithms is crucial for end users, as trust in diagnosis and prognosis is important not only for the satisfaction and potential adherence of patients, but also for their health. Explainable artificial intelligence (XAI) aims to open up this “black box,” often perceived as a cryptic and inconceivable algorithm, to increase understanding of the machines’ reasoning.XAI is an emerging field, and techniques for making machine learning explainable are becoming increasingly available. XAI for computer vision mainly focuses on image classification, whereas interpretability in other tasks remains challenging. Here, I examine explainability in computer vision beyond image classification, namely in semantic segmentation and 3D multitarget image regression. This thesis consists of five chapters. In Chapter 1 (Introduction), the background of artificial intelligence (AI), XAI, computer vision, and optics is presented, and the definitions of the terminology for XAI are proposed. Chapter 2 is focused on explaining the predictions of U-Net, a CNN commonly used for semantic image segmentation, and variations of this architecture. To this end, I propose the gradient-weighted class activation mapping for segmentation (Seg-Grad-CAM) method based on the well-known Grad-CAM method for explainable image classification. In Chapter 3, I present the application of deep learning to estimation of optical aberrations in microscopy biodata by identifying the present Zernike aberration modes and their amplitudes. A CNN-based approach PhaseNet can accurately estimate monochromatic aberrations in images of point light sources. I extend this method to objects of complex shapes. In Chapter 4, an approach for explainable 3D multitarget image regression is reported. First, I visualize how the model differentiates the aberration modes using the local interpretable model-agnostic explanations (LIME) method adapted for 3D image classification. Then I “explain,” using LIME modified for multitarget 3D image regression (Image-Reg-LIME), the outputs of the regression model for estimation of the amplitudes. In Chapter 5, the results are discussed in a broader context. The contribution of this thesis is the development of explainability methods for semantic segmentation and 3D multitarget image regression of optical aberrations. The research opens the door for further enhancement of AI’s transparency.:Title Page i List of Figures xi List of Tables xv 1 Introduction 1 1.1 Essential Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Explainable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Proposed definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Explainable Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Aims and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2 Image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 Image regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.4 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.1 Aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.2 Zernike polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.2 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Explainable Image Segmentation 23 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Grad-CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.3 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.4 Seg-Grad-CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.1 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.2 TextureMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.3 Cityscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.2 TextureMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.3 Cityscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Estimation of Aberrations 55 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.1 PhaseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.2 PhaseNet data generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.3 Retrieval of noise parameters . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.4 Data generator with phantoms . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.5 Restoration via deconvolution . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.6 Convolution with the “zero” synthetic PSF . . . . . . . . . . . . . . . . 63 3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4.1 Astrocytes (synthetic data) . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2 Fluorescent beads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.3 Drosophila embryo (live sample) . . . . . . . . . . . . . . . . . . . . . . 67 3.4.4 Neurons (fixed sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.1 Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.2 Conclusions on the results for astrocytes . . . . . . . . . . . . . . . . . . 74 3.5.3 Fluorescent beads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.5.4 Conclusions on the results for fluorescent beads . . . . . . . . . . . . . . 81 3.5.5 Drosophila embryo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5.6 Conclusions on the results for Drosophila embryo . . . . . . . . . . . . . 87 3.5.7 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4 Explainable Multitarget Image Regression 99 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.1 LIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.2 Superpixel algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3.3 LIME for 3D image classification . . . . . . . . . . . . . . . . . . . . . . 104 4.3.4 Image-Reg-LIME: LIME for 3D image regression . . . . . . . . . . . . . 107 4.4 Results: Classification of Aberrations . . . . . . . . . . . . . . . . . . . . . . . . 109 viii TABLE OF CONTENTS 4.4.1 Transforming the regression task into classification . . . . . . . . . . . . 110 4.4.2 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4.3 Parameter search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4.4 Clustering of 3D images . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.4.5 Explanations of classification . . . . . . . . . . . . . . . . . . . . . . . . 114 4.4.6 Conclusions on the results for classification . . . . . . . . . . . . . . . . 117 4.5 Results: Explainable Regression of Aberrations . . . . . . . . . . . . . . . . . . 118 4.5.1 Explanations with a reference value . . . . . . . . . . . . . . . . . . . . 121 4.5.2 Validation of explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5 Conclusions and Outlook 127 References 12

    Estimation of Optical Aberrations in 3D Microscopic Bioimages

    Full text link
    The quality of microscopy images often suffers from optical aberrations. These aberrations and their associated point spread functions have to be quantitatively estimated to restore aberrated images. The recent state-of-the-art method PhaseNet, based on a convolutional neural network, can quantify aberrations accurately but is limited to images of point light sources, e.g. fluorescent beads. In this research, we describe an extension of PhaseNet enabling its use on 3D images of biological samples. To this end, our method incorporates object-specific information into the simulated images used for training the network. Further, we add a Python-based restoration of images via Richardson-Lucy deconvolution. We demonstrate that the deconvolution with the predicted PSF can not only remove the simulated aberrations but also improve the quality of the real raw microscopic images with unknown residual PSF. We provide code for fast and convenient prediction and correction of aberrations.Comment: 7 pages, 9 figures, presented at ICFSP on 9 Sept 2022 in Paris, France, to be published in ICFSP conference proceedings in IEEE Xplore digital librar

    Towards Interpretable Semantic Segmentation via Gradient-weighted Class Activation Mapping

    Full text link
    Convolutional neural networks have become state-of-the-art in a wide range of image recognition tasks. The interpretation of their predictions, however, is an active area of research. Whereas various interpretation methods have been suggested for image classification, the interpretation of image segmentation still remains largely unexplored. To that end, we propose SEG-GRAD-CAM, a gradient-based method for interpreting semantic segmentation. Our method is an extension of the widely-used Grad-CAM method, applied locally to produce heatmaps showing the relevance of individual pixels for semantic segmentation.Comment: 2 pages, 2 figures. AAAI 2020 camera-read
    corecore